To: Jimmy Terry, PE
TGS Engineers
804-C N. Lafayette Street
Shelby, NC 28150

From: Andrew Topp, PE, PTOE

Date: October 23, 2020

Project \#: 38536.39
Re: STIP Project No. A-0009C - Passing and Climbing Lane Justification Graham County, NC

The above referenced project proposes to implement a $2+1$ (alternating passing lanes) cross-section design along NC 143 and NC 28 in Graham County, NC. The construction of a $2+1$ design will improve mobility along both corridors by allowing vehicles to efficiently pass slow moving vehicles and trucks while maintaining their direction of travel and minimizing crossings into the opposing lane of traffic. Table 1 identifies the proposed locations of the $2+1$ design (locations based on Figures 1-4 in the Appendix) along with climbing lanes located on steep grades and characterizes elements that support the implementation of that design.

As reported in the traffic analysis for this study, the improvements result in a corridor-wide average speed benefit of several miles per hour and improved reliability. Each direction and peak period experiences reliability benefits, however the largest improvement occurs the mountainous section between Cheoah and Stecoah. In this area, travel time variability reduces from 15 minutes in the No-Build condition to less than 8 minutes in the Build condition in the PM peak westbound direction due to the passing and climbing lanes installed.

Table 1: Passing and Climbing Lane Justification

Proposed Passing/ Climbing Lane Location	Associated Figure \# (Hydraulic Site No.)	Reasons for Implementation	Standards
$\begin{gathered} \text { NC } 143 \text { SB } \\ \text { Passing Lane } \\ (1,684 \mathrm{ft}) \end{gathered}$	Figure 1 (Site 3, 4)	- Rolling terrain ${ }^{1}$ - Located in curve that diminishes sight distance ${ }^{2}$ - Increased travel speed and reduced percentage time spent following ${ }^{3}$	- AASHTO Green Book (Section 3.4.4) Passing Lanes - Highway Capacity Manual (Chapter 15)
NC 143 NB Climbing Lane (2,569 ft)	Figure 1	- Steep grade (approx. 4\%) ${ }^{4}$ - Increased travel speed and reduced percentage time spent following ${ }^{3}$	- AASHTO Green Book (Section 3.4.3) Climbing Lanes - Highway Capacity Manual (Chapter 15)
NC 143 SB Climbing Lane ($5,144 \mathrm{ft}$)	Figure 1 (Site 5, 6)	- Steep grade (approx. 3\% and higher) ${ }^{4}$ - Located in multiple curves ${ }^{2}$ - Increased travel speed and reduced percentage time spent following ${ }^{3}$	- AASHTO Green Book (Section 3.4.3) Climbing Lanes - AASHTO Green Book (Section 3.4.4) Passing Lanes - Highway Capacity Manual (Chapter 15)

Proposed Passing/ Climbing Lane Location	Associated Figure \# (Hydraulic Site No.)	Reasons for Implementation	Standards

Proposed Passing/ Climbing Lane Location	Associated Figure \# (Hydraulic Site No.)	Reasons for Implementation	Standards
NC 28 WB Climbing Lane $(6,724 \mathrm{ft})$	Figure 3 (Site 21, 22)	- Steep grade (7\%) and located in a series of tight curves that diminish sight distance ${ }^{4}$ - Climbing lane gives the opportunity to pass trucks and slow-moving vehicles ${ }^{5}$ - Increased travel speed and reduced percentage time spent following ${ }^{3}$	- AASHTO Green Book (Section 3.4.3) Climbing Lanes - AASHTO Green Book (Section 3.4.4) Passing Lanes - Highway Capacity Manual (Chapter 15)
NC 28 WB Passing Lane $(1,487 \mathrm{ft})$	Figure 4	- Steep grade (7\%) and located before a major curve ${ }^{1}$ - Passing lane gives the opportunity to pass slow-moving vehicles and vehicles turning off the mainline onto the smaller y-line roadways ${ }^{5}$ - Increased travel speed and reduced percentage time spent following ${ }^{3}$	- AASHTO Green Book (Section 3.4.4) Passing Lanes - Highway Capacity Manual (Chapter 15)
NC 28 EB Passing Lane $(5,162 \mathrm{ft})$	Figure 4 (Site 24-26)	- Grade (approx. 5\%) and located before a series of curves ${ }^{1}$ - Passing lane gives the opportunity to pass slow-moving vehicles and vehicles turning off the mainline onto the smaller y-line roadways ${ }^{5}$ - Increased travel speed and reduced percentage time spent following ${ }^{3}$	- AASHTO Green Book (Section 3.4.4) Passing Lanes - Highway Capacity Manual (Chapter 15)
NC 28 EB Climbing Lane (2,221 ft)	Figure 4	- Steep grade (approx. 7\%) and located in a curve ${ }^{4}$ - Climbing lane gives the opportunity to pass slow-moving trucks and vehicles turning off the mainline onto the smaller y-line roadways and other destinations ${ }^{5}$ - Increased travel speed and reduced percentage time spent following ${ }^{3}$	- AASHTO Green Book (Section 3.4.3) Climbing Lanes - AASHTO Green Book (Section 3.4.4) Passing Lanes - Highway Capacity Manual (Chapter 15)

${ }^{1}$ Where a sufficient number and length of passing sections cannot be obtained in the design of horizontal and vertical alignment alone, an occasional added lane in one or both directions of travel may be introduced to provide more passing opportunities. Such sections are particularly advantageous in rolling terrain, especially where alignment is winding, or the profile includes critical lengths of grade. (AASHTO Green Book - 3.4.4)

2 The value of a passing lane is more obvious at locations where passing sight distance is restricted. (AASHTO Green Book - 3.4.4)
${ }^{3}$ Within the passing lane, the average travel speed is generally between 8% and 11% higher than its upstream value and the percent time spent following is generally 58% to 62% of its upstream value. Within the climbing lane, there is a 7% improvement in ATS and 80% improvement in PTSF. (Highway Capacity Manual - Chapter 15, Part 4)
${ }^{4}$ Adding a climbing lane for an upgrade on a two-lane highway can offset the decline in traffic operations caused by the combined effects of the grade, traffic volume, and heavy vehicles. (AASHTO Green Book - 3.4.3)
${ }^{5}$ Passing lanes can also be provided to improve overall traffic operations on two-lane highways by reducing delays caused by inadequate passing opportunities over significant lengths of highways. (AASHTO Green Book - 3.4.4)

Legend

- Passing Lanes Climbing Lanes
\square Hydraulic Site
$\dagger^{\dagger} \dagger$ Cemetery
\square Stecoah Valley Center
4 Religious Facility
Water Supply Intakes

Historic Architecture

- Recommended Eligble
\square NRHP Boundaries
Potential Jurisdictional Perennial Stream Potential Jurisdictional Intermittent Stream Select Culverts/Pipes/Bridges
\square Potential Jurisdictional Wetland

Indiana Bat Potential Habitat National Forest System Lands Geologic Map Unit Zwe
Natural Heritage Program Areas Game Lands Floodplain

